
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Interpolating polynomials

Introduction

• In this topic, we will

– See how to find interpolating linear and quadratic polynomials

– Learn about the Vandermonde matrix and see how to interpolate
n points with a polynomial of degree n – 1

– Review why it is necessary to use partial pivoting when solving
systems of linear equations

– See how to decrease the error by shifting x-values before finding
the interpolating polynomial

– Look at implementations of functions for finding interpolating
quadratic polynomials in both C++ and MATLAB

Interpolation

2

Linear interpolation

• Given two points (x1, y1), (x2, y2) with x1 ≠ x2,

you can find the straight line that passes through these two points

– In secondary school, you likely found a line y = mx + b as follows:

– Subtract Equation 1 from Equation 2 to get

– Isolate m

– And substitute m back in and solve for b:

Interpolation

3

1 1

2 2

y mx b

y mx b

 

 

2 1 2 1y y mx mx  

2 1

2 1

y y
m

x x






2 1

1 1

2 1

y y
b y x

x x


 



Linear interpolation

• What you may have noticed by now is that this is a system
of two linear equations in two unknowns:

– Recall that it is mx1 + b·1 = y1 and mx2 + b·1 = y2

• Interpolate (1.5, 7.2) and (3.3, 10.8)

– In MATLAB, we would do the following:

>> a = [1.5 1; 3.3 1] \ [7.2 10.8]'

ans =

2.0000

4.2000

Interpolation

4

1 1

2 2

1

1

x ym

x yb

    
    

    

2 4.2y x 

Quadratic interpolation

• Given three points (x1, y1), (x2, y2), (x3, y3) with all three x values
being different, can you find a straight line passing through them?

– Of course not; for example (–1, 1), (1, 1), (2, 4)

• The straight line y = 1 passes through the first two points,
but not through the third

• There is, however, a quadratic that
passes through these three points:

y = x2

Interpolation

5

Quadratic interpolation

• Given three points (x1, y1), (x2, y2), (x3, y3) with all three x values

being different, can you find a quadratic passing through them?

– Suppose the quadratic is of the form ax2 + bx + c

– This is a system of three linear equations in three unknowns:

Interpolation

6

2

1 11

2

2 2 2

2

3 3 3

y bx cax

y ax bx c

y ax bx c

 

  

  

2

1 1 1

2

2 2 2

2

3 3 3

1

1

1

x x a y

x x b y

x x c y

    
    

    
    
    

Quadratic interpolation

• From here on in this course, we always write down an unknown
polynomial as a2 x

2 + a1 x + a0

– The subscript of the coefficient equals the exponent of the term

– Thus, our previous problem would be to solve:

Interpolation

7

2

1 1 2 1

2

2 2 1 2

2

3 3 0 3

1

1

1

x x a y

x x a y

x x a y

    
    

    
    
    

Linear algebra

• Does this system of three equations and three unknowns
have a unique solution?

– We can calculate the determinant:

– As long as all three x values are different,

the determinant is non-zero

– If any two x-values are equal, the determinant is zero

Interpolation

8

2

1 1 2 1

2

2 2 1 2

2

3 3 0 3

1

1

1

x x a y

x x a y

x x a y

    
    

    
    
    

   

2

1 1

2

2 2 1 2 1 3 2 3

2

3 3

1

det 1

1

x x

x x x x x x x x

x x

 
 

    
 
 

Quadratic interpolation

• Let us do an example:

– Find the interpolating quadratic polynomial passing through

(0.4, 3.12), (1.2, 3.28), (3.5, 18)

– We must solve

– In MATLAB, we would do the following:
>> V = [0.4^2 0.4 1

1.2^2 1.2 1

3.5^2 3.5 1];

>> a = V \ [3.12 3.28 18.0]'

a =

2

-3

4

Interpolation

9

2

2

2

1

2

0

0.4 0.4 1 3.12

1.2 1.2 1 3.28

3.5 3.5 1 18.0

a

a

a

    
    

    
    
    

22 3 4y x x  

Quadratic interpolation

• Writing down these matrices in MATLAB can be error prone

– The vander function in MATLAB generates this matrix
>> V = [0.4^2 0.4 1

1.2^2 1.2 1

3.5^2 3.5 1]

V =

0.1600 0.4000 1.0000

1.4400 1.2000 1.0000

12.2500 3.5000 1.0000

>> V = vander([0.4 1.2 3.5])

V =

0.1600 0.4000 1.0000

1.4400 1.2000 1.0000

12.2500 3.5000 1.0000

– This matrix is called the Vandermondematrix

Interpolation

10

Quadratic interpolation

• Remember, however, just because the determinant is
non-zero does not mean we can find the solution
numerically

– Suppose the three points were 0, 0.001 and 100:

>> V = vander([0 0.001 100]')

0 0 1

0.000001 0.001 1

10000 100 1

>> det(V)

-9.9999

>> cond(V)

14143693.10488148

Interpolation

11

0 0 1

0.000001 0.001 1

10000 100 1

 
 
 
 
 

Quadratic interpolation

• Equally spaced numbers result in a smaller condition number:
>> cond(vander([0 1 2]))

13.9125

>> cond(vander([0 0.9 2]))

14.0740

>> cond(vander([0 1.1 2]))

14.0770

>> cond(vander([-1 0 1]))

3.2255

– Fortunately, most engineering data comes from periodically
sampled sensors, so sampled data will, in general, see have
x-values that are equally spaced

• Actually, they will usually be t-values as they are samples in time

Interpolation

12
You don’t have to know why or prove that equally-spaced
points result in smaller condition numbers

General interpolation

Theorem

Given n points (x1, y1), …, (xn, yn) with all x-values being
distinct, there exists a unique polynomial

an–1x
n–1 + an–2x

n–2 + ··· + a2x
2 + a1x + a0

of degree n – 1 that passes through all n points.

Proof:

The proof is constructive.

The system of linear equations is as follows:

Interpolation

13

1 2
1 11 1 1

1 2
2 22 2 2

1 2
1 11 1 1

1 2
0

1

1

1

1

n n
n

n n
n

n n
nn n n

n n
nn n n

a yx x x

a yx x x

a yx x x

a yx x x

 


 


 
  

 

    
    
    
    
    
    

    
    

General interpolation

Now, normally, one cannot use the determinant to determine

numerically if a matrix is invertible

However, with an algebraic matrix, it is possible to use

induction to deduce that the determinant of the matrix is

That is, it is the product of all pairwise differences of the

x values.

If all x values are different, all differences are non-zero

Thus the determinant is non-zero, and thus a unique

solution exists. ▮

Interpolation

14

 

1 2

1 1 1

1 2

2 2 2

1 11 2

1 1 1

1 2

1

1

det

1

1

n n

n n

n n

i j

i j in n

n n n

n n

n n n

x x x

x x x

x x

x x x

x x x

 

 

   

  

 

 
 
 
   
 
 
 
 



You only need to be aware of the theorem;
you don’t need to know the proof.

General interpolation

• Once again, having n points where the x-values are
equally spaced tends to have smaller condition numbers

– Equally spaced x-values are not actually ideal,
but the ideal points are beyond the scope of this point

– Also, as mentioned before, these points tend to come from a
sensor being periodically sampled

• For example:
>> cond(vander([1 2 3 4]))

1171.0

>> cond(vander([1 1.1 3.9 4]))

4932.3

>> cond(vander([-1.5 -0.5 0.5 1.5]))

9.1617

>> cond(vander([-1.5 -0.80233 0.80233 1.5]))

7.3919

Interpolation

15

Numeric error

• In the previous example, we discussed how failing to account for
floating-point arithmetic may lead to errors in finding solutions
to systems of linear equations

– Suppose we want to interpolate the points

(0.00001532, 4.545), (2.523, 5.237)

– We must therefore solve

– Using our six-digit floating-point representation

• Without partial pivoting, the solution is y = 4.545

• With partial pivoting, the solution is y = 0.2743x + 4.545

Interpolation

16

0.00001532 1 4.545

2.523 1 5.237

 
 
 

Numeric error

• You may ask why anyone would interpolate

(0.00001532, 4.545), (2.523, 5.237)

instead of

(0.0, 4.545), (2.523, 5.237)

• Consider this program:
#include <iostream>

int main();

int main() {

std::cout.precision(16);

for (double x{-1.0}; x < 0.05; x += 0.1) {

std::cout << x << std::endl;

}

return 0;

}

Interpolation

17

Output:
-1
-0.9
-0.8
-0.7000000000000001
-0.6000000000000001
-0.5000000000000001
-0.4000000000000001
-0.3000000000000002
-0.2000000000000001
-0.1000000000000001
-1.387778780781446e-16

This is for information purposes only
- This is not on the examination

Numeric error

• We can even see the issues in MATLAB:
>> small = 2^-53 + 2^-55

small = 1.387778780781446e-16

>> a = [small 1; 2.523 1] \ [4.545 5.237]'

a =

0.27428

4.54500

>> A = [small 1 4.545; 2.523 1 5.237];

A =

-1.3878e-16 1 4.5450

2.5230 1 5.2370

>> A(2,:) = A(2,:) - A(2,1)/A(1,1)*A(1,:)

A =

-1.3878e-16 1.0000 4.5450

0.0000 1.8180e+16 8.2629e+16

>> a0 = A(2,3)/A(2,2)

a0 = 4.5450

>> a1 = (A(1,3) - a0*A(1,2))/A(1,1)

a1 = 0

Interpolation

18

161.3878 10 1 4.545

2.523 1 5.237

 
 
 

This is for information purposes only
- This is not on the examination

Shifting the x-values

• Recall also that points should be closer to zero

– Assume we are interpolating

(x1, y1), (x2, y2), (x3, y3)

with x1 < x2 < x3

• It makes more sense to interpolate the points

(x1 – x2, y1), (0, y2), (x3 – x2, y3)

• If we wanted to evaluate the interpolating polynomial at x,

we would evaluate the new polynomial at x – x2

• The Vandermonde matrices are

Interpolation

19

2

1 1

2

2 2

2

3 3

1

1

1

x x

x x

x x

 
 
 
 
 

 

 

2

1 2 1 2

2

1 2 3 2

1

0 0 1

1

x x x x

x x x x

  
 
 
    

Shifting the x-values

• At this point, we are solving:

• We may immediately deduce that a0 = y2,

so we are really only solving

Interpolation

20

 

 

2

1 2 1 2 2 1

1 2

2
0 3

3 2 3 2

1

0 0 1

1

x x x x a y

a y

a yx x x x

      
    

    
          

 

 

2

1 2 1 2 1 22

2
3 211 2 3 2

x x x x y ya

y yax x x x

     
     
        

Shifting the x-values

• Therefore, suppose we are finding the interpolating quadratic of

(x1, y1), (x2, y2), (x3, y3)

• Find the interpolating quadratic of

(x1 – x2, y1), (0, y2), (x3 – x2, y3)

– This requires us to find the interpolating polynomial

p(x) = a2 x
2 + a1 x + y2

– This requires us to solve:

• To evaluate the interpolating polynomial at x1 < x < x3,
we calculate

p(x – x2)

Interpolation

21

 

 

2

1 2 1 2 1 22

2
3 213 2 3 2

x x x x y ya

y yax x x x

     
     
        

Shifting the x-values

• Now, if the three points are equally spaced by h:

(x2 – h, y1), (x2, y2), (x2 + h, y3)

• Find the interpolating quadratic of

(–h, y1), (0, y2), (h, y3)

– Solving

• This means that

Interpolation

22

2
1 22

2
3 21

y yah h

y yah h

    
    

    

3 2 1

2 2

3 1

1

0 2

2

2

2

y y y
a

h

y y
a

h

a y

 







Shifting the x-values

• We can now implement this in C++:
double quad_interp(double x2, double h, double y[3],

double x) {

double a1{ (y[2] - y[0])/(2.0*h) };

double a2{ (y[2] - 2.0*y[1] + y[0])/(2.0*h*h) };

return a2*(x - x2)*(x - x2) + a1*(x - x2) + y[1];

}

Interpolation

23This is for information purposes only
- This is not on the examination

Shifting the x-values

• We can also implement this in MATLAB:
function [y] = quad_interp(x2, h, ys, x)

a1 = (ys(3) - ys(1))/(2.0*h);

a2 = (ys(3) - 2.0*ys(2) + ys(1))/(2.0*h*h);

y = a2*(x - x2)*(x - x2) + a1*(x - x2) + ys(2);

end

Interpolation

24

Shifting the x-values

• Let us look at an example:

(999.9, 0.5), (1000.0, 0.8), (1000.1, 0.9)

• To find the interpolating polynomial at x = 1000.04

– The exact answer is y = 0.864

Interpolation

25

Shifting the x-values

• We can solve the system of linear equations

• Alternatively, we can use the
technique we just described

(–0.1, 0.5), (0, 0.8), (0.1, 0.9)

Interpolation

26

2

2

2

1

2

0

999.9 999.9 1 0.5

1000.0 1000.0 1 0.8

1000.1 1000.1 1 0.9

a

a

a

    
    

    
    
    

Shifting the x-values

• In MATLAB:
>> a = vander([999.9 1000 1000.1]) \ [0.5 0.8 0.9]'

a =

-9.999999962993799e+00

2.000199992597534e+04

-1.000199916298154e+07

>> a(1)*1000.04^2 + a(2)*1000.04 + a(3)

ans = 0.8640000019222498

>> quad_interp(1000.0, 0.1, [0.5 0.8 0.9], 1000.04)

ans = 0.8639999999999564

• The relative error 44056 times larger

Interpolation

27

Numeric error

• Recall that the condition number tells you how much an error
may be magnified

>> cond(vander([999.9 1000 1000.1]))

212132567547302.3

>> cond(vander([-0.1 0.1]))

9.999999999999996

– The first is larger by a factor of 21 trillion

Interpolation

28

Other issues

• Other issues:

– Higher-order interpolating polynomials result in higher error

• Consequently, we will restrict ourselves to lower degree
interpolating polynomials

– If we are interpolating the x-values

x1 < x2 < ··· < xn

it is generally only safe to evaluate the interpolating polynomial
for values of x1 < x < xn

• If evaluating the interpolating polynomial for values of x either

x < x1 or x > xn

it is called extrapolation, and the error increases rapidly

Interpolation

29

Further improvements

• Incidentally, here is an improvement to our program:

– Map the x-values so that x2 - h, x2 and x2 + h
map to -1, 0 and 1, respectively
double quad_interp(double x2, double h, double y[3],

double x) {

double a1{ y[2] - y[0] };

double a2{ y[2] - 2.0*y[1] + y[0] };

double dx{ (x - x2)/h };

return (a2*dx + a1)*dx/2.0 + y[1];

}

Interpolation

30This is for information purposes only
- This is not on the examination

Further improvements

• Turning it into a class is even more efficient:
class Quad_interp {

public:

Quad_interp(double x2, double h, double y[3]);

double eval(double x) const;

private:

double a_[3];

double x2_;

double h_;

};

Quad_interp::Quad_interp(double x2, double h, double y[3]) :

a_{ y[1], (y[2] - y[0])/2.0, (y[2] - 2.0*y[1] + y[0])/2.0 },

x2_{ x2 },

h_{ h } {

// Empty constructor

}

Interpolation

31This is for information purposes only
- This is not on the examination

Further improvements

• The eval member function only uses the stored coefficients
double Quad_interp::eval(double x) const {

x = (x - x2_)/h_;

return (a_[2]*x + a_[1])*x + a_[0];

}

Interpolation

32This is for information purposes only
- This is not on the examination

Summary

• Following this topic, you now

– Understand how to find interpolating polynomials using linear
algebra

– Know the Vandermonde matrix

• You also understand why the last column of the matrix is all ones
in the Vandermonde matrix

– Revisited the justification for using partial pivoting with Gaussian
elimination

– Understand that large x-values may result in large increases in
the error

– Are aware of further issues with interpolating polynomials

– Have seen some further improvements to our functions

Interpolation

33

References

[1] https://en.wikipedia.org/wiki/Gaussian_elimination

[2] https://en.wikipedia.org/wiki/Pivot_element

[3] https://en.wikipedia.org/wiki/Jacobi_method

[4] https://en.wikipedia.org/wiki/Condition_number

Interpolation

34

Acknowledgments

Brian Nguyen for spotting an error in the formula for backward
substitution on p.18.

Tazik Shahjahan for pointing out typos.

Aaron Hong for noting the indices on one term of a polynomial were
wrong.

Interpolation

35

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Interpolation

36

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Interpolation

37

